Cigiform covering your eye with comfort

Follow-Up and Problem Solving Guide

Recommended DigiForm[™] Follow Up Schedule

16.6mm Bevel Edge Landing Zone 15.8mm Main Landing Zone 14.0mm 11.0mm Limbal Adjustment Tone 10.0mm Corneal Zone 8.0mm Optical Zone

OPTIMUN

EXTR/

week after dispensing appointment
weeks after dispensing appointment
weeks after dispensing appointment
months after dispensing appointment
Every 6-to-12 months or the practitioner's preference

For the initial follow-up visit, we recommend that the patient returns for an afternoon appointment, in order to evaluate the previously dispensed lens after appropriate lens settling has occurred. It is recommended the patient arrives at your office wearing their lenses for every follow-up appointment, unless otherwise directed.

Document the Subjective Data on Follow Up Visits

Number of hours the lenses have been on	Vision concern during lens wear, or after lens removal
Average wearing schedule each day	Eye redness during lens wear, or after lens removal
Are the lenses easy to apply and remove	Fogging or clouding of vision during lens wear
Comfort issues with or without lens wear	Daily care regimen

White Light and Fluorescein Evaluation

Using a white light, look at the front surface of the lens to determine if there is concern for wettability issues, or if debris is present in the chamber of the lens. Evaluate the lens fit to identify good corneal and limbal clearance, and proper edge alignment. Perform an over-refraction to ensure the lens power is correct.

Apply fluorescein on the front surface of the lens. Ask the patient to blink to distribute the fluorescein. Scan the edge of the lens to determine if fluorescein is escaping from underneath the lens edge. Alignment of the lens with the scleral shape is important and will prevent air bubbles or debris from getting trapped under the lens.

Image: Augusto Rosse Toledo.

A properly fitted DigiForm lens (Figure 1) should softly land tangentially, while evenly distributing weight and pressure outward toward the limbus. As you move further from the limbus, the sclera becomes more asymmetric, and in some cases, a toric curve landing design may serve to better match the nature of the sclera shape.

When to Consider a Toric Curve Landing Design

A toric curve landing design will reduce the areas of localized pressure, lessen non-uniform edge lift, improve centration, and decrease air bubbles or debris from entering underneath the lens. Consider a toric curve landing design when:

- Sodium fluorescein is entering in an asymmetric pattern, or entering into one meridian more than than another meridian (Figure 2).
- The tear reservoir has debris is trapped underneath the lens. This is often due to asymmetry, where one meridian is flatter than the other meridian.

Image: Augusto Rosse Toledo.

Problem Solving

Problem: Excessive Edge Lift

Image: Carri Russell, FCLSA.

Can cause bubbles, which may affect vision or lens awareness, and increase the chance of debris getting trapped underneath the lens.

Solution: Steepen the Main Landing Zone and Bevel Edge Landing Zone.

Problem: Blanching/Impingement

Image: Ferris State University

Blood flow is impinged, causing engorgement before and after this area, which is visible as redness outside the lens edge and at the margin of the area where the pressure is exercised.

Solution: Flatten Bevel Edge Landing Zone.

Problem: Edge Standoff

Image: Carri Russell, FCLSA.

Mostly occurs when lenses are fitted too flat on the conjunctival tissue, which raises the level of lens awareness and discomfort.

Solution:Steepen theLimbal Adjustment Zone, Main Landing
Zone and Bevel Edge Landing Zone.

Problem: Conjunctival Prolapse

An entrapment of the conjunctiva, draping over the cornea, near the limbal region, and under the scleral lens. Occurs in the inferior quadrant on patients with loose conjunctival tissue.

Solution: Decrease Vault by Flattening the Base Curve.

Problem: Pre-Lens Surface Clouding

Image: Carri Russell, FCLSA.

A material with a low wetting angle may improve lens wettability and reduce hydrophobic areas that can attract deposits.

Solution: Order Tangible Hydra-PEG, Plasma Treatment, or Change the Material to a Lower Wetting Angle.

Problem: Peripheral Bubbles

Image: Tom Arnold, OD

Due to lack of lens alignment with the sclera, which may cause patient discomfort and increase reservoir debris.

Solution: Consider a Back Surface Toric Haptic Design.

Problem: Lens Decentration

The nasal sclera is typically more elevated than the temporal sclera, and often results in some temporal decentration of the lens. Additionally, the mass of a scleral lens can also result in some inferior decentration, as well. Often this is not a significant problem but can, in some cases, result in a change in the lens-to-cornea fitting relationship.

Solution: Decrease Vault by Flattening the Base Curve.

